Follicular dendritic cells are related to bone marrow stromal cell progenitors and to myofibroblasts.
نویسندگان
چکیده
Follicular dendritic cells (FDC) are involved in the presentation of native Ags to B cells during the secondary immune response. Some authors consider FDC to be hemopoietic cells, whereas others believe them to be mesenchymal cells. The low proportion of FDC in the lymphoid follicle, together with technical difficulties in their isolation, make these cells difficult to study. We show that Fibroblast Medium can be used successfully to isolate and maintain FDC lines. In this culture medium, we obtained 18 FDC lines from human tonsils, which proliferated for as long as 18 wk and showed a stable Ag phenotype as detected by flow cytometry and RT-PCR. FDC lines were CD45-negative and expressed Ags associated to FDC (CD21, CD23, CD35, CD40, CD73, BAFF, ICAM-1, and VCAM-1) and Ags specific for FDC (DRC-1, CNA.42, and HJ2). These cell lines were also able to bind B cells and secrete CXCL13, functional activities characteristic of FDC. Nevertheless, the additional expression of STRO-1, together with CD10, CD13, CD29, CD34, CD63, CD73, CD90, ICAM-1, VCAM-1, HLA-DR, alkaline phosphatase, and alpha-smooth muscle actin (alpha-SM actin) indicated that FDC are closely related to bone marrow stromal cell progenitors. The expression of alpha-SM actin also relates FDC with myofibroblasts. Like myofibroblasts, FDC lines expressed stress fibers containing alpha-SM actin and were able to contract collagen gels under the effect of TGFbeta1 and platelet-derived growth factor. These findings suggest that FDC are a specialized form of myofibroblast and derive from bone marrow stromal cell progenitors.
منابع مشابه
Bone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کاملLow-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 177 1 شماره
صفحات -
تاریخ انتشار 2006